Abstract

Red pigment-concentrating hormone (RPCH), an octapeptide found in crustaceans and insects with the sequence pGlu-Leu-Asn-Phe-Ser-Pro-Gly-Trp-NH2, is an N- and C-terminally blocked uncharged peptide. These structural features are shared with many members of the larger adipokinetic hormone (AKH)/RPCH peptide family in insects. We have applied vacuum UV matrix-assisted laser desorption/ionization (MALDI)-Fourier transform ion cyclotron mass spectrometry (FTMS) to the direct analysis of crustacean sinus gland tissues, using 2,5-dihydroxybenzoic acid (DHB) as the MALDI matrix, and have found that RPCH is detected in the cationized, [M + Na]+, form under conditions where other peptides in the direct tissue spectra are protonated without accompanying [M + Na]+ or [M + K]+ satellite peaks. The [M + H]+ ion for RPCH is not detected in tissue samples or for an RPCH standard, even when care is taken to eliminate metal ions. This behavior is not unprecedented; however, both direct tissue spectra and SORI-CID spectra provide no clues to suggest that the ionizing agent is a metal cation. In this communication, we characterize the MALDI-FTMS ionization and SORI-CID mass spectra of the [M + Na]+ and [M + K]+ ions from RPCH, and report on the detection of this neuropeptide in sinus gland tissues from the lobster Homarus americanus and the kelp crab Pugettia producta. We describe two strategies, an on-probe extraction procedure and a salt-doping approach, that can be applied to previously analyzed MALDI tissue samples to enhance and unmask sodiated peptides that may otherwise be mistaken for novel neuropeptides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call