Abstract

In this paper, we consider the theoretical bound of the probability of error in compressed sensing (CS) with the Bayesian approach. In the detection problem, the signal is sparse and is reconstructed from a compressed measurement vector. Utilizing the oracle estimator in CS, we provide a theoretical bound of the probability of error when the noise in CS is white Gaussian noise (WGN). We show that without any additional information in CS, the probability of error obtained using the signal reconstructed by four recovery algorithms: the basis pursuit denoising (BPDN) algorithm, the Dantzig selector, the orthogonal matching pursuit (OMP) method and the compressive sampling matching pursuit (CoSaMP) algorithm is always larger than the derived theoretical bound. Simulation results demonstrate the effectiveness of our result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.