Abstract

One of the outstanding scientific questions in astronomy is the frequency at which solar systems form. Answering this question is an observational challenge because extrasolar planets are intrinsically difficult to directly detect. The direct detectability of planets is examined during the short but unique epoch of giant impacts that is a hallmark of the standard theory of planetary formation. Sufficiently large impacts during this era are capable of creating a luminous, 1500-2500 K photosphere, which can persist for timescales exceeding 103 years in some cases. The detectability of such events and the number of young stars one would need to examine to expect to find a luminous terrestrial class planet after a giant impact are examined. With emerging IR interferometric technology, thermally-luminous earth-sized objects can be detected in nearby star forming regions in 1-2 nights observing time. Unfortunately, predictions indicate that approximately 250 young stars would have to be searched to expect to find one hot, terrestrial-sized planet. By comparison, the detection of Saturn and Uranus/Neptune-sized planets after a giant impact requires only 1-2 hours of observing time. A single Keck-class telescope should be able to determine whether such planets are common in the nearest star forming regions by examining about less than 100 young stars over a few tens of nights. The results obtained herein suggest a new strategy for the detection of solar systems with the potential for the observational confirmation of the standard theory of late-stage planetary accretion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call