Abstract
We report on a detailed analysis of electron and hole wave functions with their overlap integrals for InAs/AlSb/GaSb based N-structure type-II superlattice (T2SL) pin detectors under applied reverse bias. Bandgap energies and superlattice minibands are performed by envelope function approximation using pseudopotential method for input parameters such as effective masses and envelope functions at Γ point. The layer thickness of detector structure is designed to operate in the long wavelength infrared range given with the maximum overlap of around 8.6 μm. Electron wave functions show strong localizations in the neighboring wells under low electrical fields resulting with lower overlap integrals. An increase in the electrical field causes strong overlap by reduced localizations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.