Abstract

Invariant tori are prominent features of symplectic and volume-preserving maps. From the point of view of chaotic transport the most relevant tori are those that are barriers, and thus have codimension one. For an n-dimensional volume-preserving map, such tori are prevalent when the map is nearly “integrable,” in the sense of having one action and n − 1 angle variables. As the map is perturbed, numerical studies show that the originally connected image of the frequency map acquires gaps due to resonances and domains of nonconvergence due to chaos. We present examples of a three-dimensional, generalized standard map for which there is a critical perturbation size, ε c , above which there are no tori. Numerical investigations to find the “last invariant torus” reveal some similarities to the behavior found by Greene near a critical invariant circle for area preserving maps: the crossing time through the newly destroyed torus appears to have a power law singularity at ε c , and the local phase space near the critical torus contains many high-order resonances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.