Abstract

Most Galaxy-sized systems (M host 1012 M ?) in the ?CDM cosmology are expected to have interacted with at least one satellite with a total mass M sat 1011 M ? 3M disk in the past 8 Gyr. Analytic and numerical investigations suggest that this is the most precarious type of accretion for the survival of thin galactic disks because more massive accretion events are relatively rare and less massive ones preserve thin disk components. We use high-resolution, dissipationless N-body simulations to study the response of an initially thin, fully formed Milky Way-type stellar disk to these cosmologically common satellite accretion events, and show that the thin disk does not survive. Regardless of orbital configuration, the impacts transform the disks into structures that are roughly three times as thick and more than twice as kinematically hot as the observed dominant thin disk component of the Milky Way. We conclude that if the Galactic thin disk is a representative case, then the presence of a stabilizing gas component is the only recourse for explaining the preponderance of disk galaxies in a ?CDM universe; otherwise, the disk of the Milky Way must be uncommonly cold and thin for its luminosity, perhaps as a consequence of an unusually quiescent accretion history.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.