Abstract

SN 2008S erupted in early 2008 in the grand design spiral galaxy NGC 6946. The progenitor was detected by Prieto et al. in Spitzer Space Telescope images taken over the four years prior to the explosion, but was not detected in deep optical images, from which they inferred a self-obscured object with a mass of about 10 Msun. We obtained Spitzer observations of SN 2008S five days after its discovery, as well as coordinated Gemini and Spitzer optical and infrared observations six months after its outburst. We have constructed radiative transfer dust models for the object before and after the outburst, using the same r^-2 density distribution of pre-existing amorphous carbon grains for all epochs and taking light-travel time effects into account for the early post-outburst epoch. We rule out silicate grains as a significant component of the dust around SN 2008S. The inner radius of the dust shell moved outwards from its pre-outburst value of 85 AU to a post-outburst value of 1250 AU, attributable to grain vaporisation by the light flash from SN 2008S. Although this caused the circumstellar extinction to decrease from Av = 15 before the outburst to 0.8 after the outburst, we estimate that less than 2% of the overall circumstellar dust mass was destroyed. The total mass-loss rate from the progenitor star is estimated to have been (0.5-1.0)x10^-4 Msun yr^-1. The derived dust mass-loss rate of 5x10^-7 Msun yr^-1 implies a total dust injection into the ISM of up to 0.01 Msun over the suggested duration of the self-obscured phase. We consider the potential contribution of objects like SN 2008S to the dust enrichment of galaxies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call