Abstract
The design storm approach, where the subject criterion variable is evaluated by using a synthetic storm pattern composed of identical return frequencies of storm pattern input, is shown to be an effective approximation to a considerably more complex probabilistic model. The single area unit hydrograph technique is shown to be an accurate mathematical model of a highly discretized catchment with linear routing for channel flow approximation, and effective rainfalls in subareas which are linear with respect to effective rainfall output for a selected “loss” function. The use of a simple “loss” function which directly equates to the distribution of rainfall depth-duration statistics (such as a constant fraction of rainfall, or a ϕ-index model) is shown to allow the pooling of data and thereby provide a higher level of statistical significance (in estimating T-year outputs for a hydrologic criterion variable) than use of an arbitrary “loss” function. The above design storm unit hydrograph approach is shown to provide the T-year estimate of a criterion variable when using rainfall data to estimate runoff.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.