Abstract

The research and development of the holographic data storage (HDS) is advanced, as one of the high-speed, mass storage systems of the next generation. Recently, along the development of the write-once system that uses photopolymer media, large capacity ROM type HDS which can replace conventional optical discs becomes important. In this study, we develop the ROM type HDS using a diffractive optical element (DOE), and verify the effectiveness of our approach. In order to design DOE, iterative Fourier transform algorithm was adopted, and DOE is fabricated with electron beam (EB) cutting and nanoimprint lithography. We optimize the phase distribution of the hologram by iterative Fourier transform algorithm known as Gerchberg–Saxton (GS) algorithm with the angular spectrum method. In the fabrication process, the phase distribution of the hologram is implicated as the concavity and convexity structure by the EB cutting and transcribed with nanoimprint lithography. At this time, the mold is formed as multiple-stage concavity and convexity. The purpose of multiple-stage concavity and convexity is to obtain high diffraction efficiency and signal-to-noise ratio (SNR). Fabricated trial model DOE is evaluated by the experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.