Abstract
Transmission line lengths in the protection circuitry of a high-frequency (>20-MHz) ultrasound imaging system have an important effect on the frequency, amplitude, and bandwidth of the pulse-echo response of the system. A model that includes the transmission line lengths between the pulser, transducer, and receiver and the electromechanical properties of high-frequency transducers is used to illustrate the importance of correctly choosing these line lengths. An iterative optimization procedure for designing the protection circuitry for a broadband system is proposed. A theoretical and experimental analysis of the validity of this approach is reported for a 45-MHz PVDF transducer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.