Abstract

A negative stiffness element is always employed to generate high-static–low-dynamic stiffness characteristic of the vibration isolator, reduce the resonance frequency of the isolator, and improve the vibration isolation performance under low and ultra-low frequency excitation. In this paper, a new compact negative stiffness permanent magnetic spring (NSPMS) that is composed of two axial-magnetized permanent magnetic rings is proposed. An analytical expression of magnetic negative stiffness of the NSPMS is deduced by using the Coulombian model. After analyzing the effect of air-gap width, air-gap position, height difference between the inner ring and outer ring on the negative stiffness characteristic, a design procedure is proposed to realize the negative stiffness characteristic with a global minimum linear component and uniformity stiffness near the equilibrium position. Finally, an experimental prototype is developed to validate the effectiveness of the NSPMS. The experimental results show that combining a vibration isolator with the NSPMS in parallel can lower the natural frequency and improve the isolation performance of the isolator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call