Abstract

This paper uses linear quadratic optimal control theory to design high-speed Dwell-Rise-Dwell (D-R-D) cams. Three approaches to D-R-D cam design are compared. In the first approach the cam is designed to be optimal at a fixed operating speed, i.e., a tuned cam design is obtained. In the second approach the cam profile is determined by minimizing a sum of quadratic cost functions over a range of discrete speeds, thus producing a cam-follower system which is optimal over a range of speeds. The third technique uses trajectory sensitivity minimization to design a cam which is insensitive to speed variations. All design methods are formulated as linear quadratic optimal control problems and solved using an efficient numerical procedure. It is shown that the design techniques developed can lead to cams that have significantly lower peak contact stress, contact force and energy loss when compared to a polydyne cam design. Furthermore, the trajectory sensitivity minimization approach is shown to yield cams that have lower residual vibration, over a range of speeds, when compared to a polydyne cam design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.