Abstract

Using first principles from inference, we design a set of functionals for the purposes of ranking joint probability distributions with respect to their correlations. Starting with a general functional, we impose its desired behavior through the Principle of Constant Correlations (PCC), which constrains the correlation functional to behave in a consistent way under statistically independent inferential transformations. The PCC guides us in choosing the appropriate design criteria for constructing the desired functionals. Since the derivations depend on a choice of partitioning the variable space into n disjoint subspaces, the general functional we design is the n-partite information (NPI), of which the total correlation and mutual information are special cases. Thus, these functionals are found to be uniquely capable of determining whether a certain class of inferential transformations, , preserve, destroy or create correlations. This provides conceptual clarity by ruling out other possible global correlation quantifiers. Finally, the derivation and results allow us to quantify non-binary notions of statistical sufficiency. Our results express what percentage of the correlations are preserved under a given inferential transformation or variable mapping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.