Abstract

This brief proposes a new method for designing digital all-pass filters with a minimax design criterion using second-order cone programming (SOCP). Unlike other all-pass filter design methods, additional linear constraints can be readily incorporated. The overall design problem can be solved through a series of linear programming subproblems and the bisection search algorithm. The convergence of the algorithm is guaranteed. Nonlinear constraints such as the pole radius constraint of the filters can be formulated as additional SOCP constraints using Rouche's theorem. It was found that the pole radius constraint allows an additional tradeoff between the approximation error and the stability margin. The effectiveness of the proposed method is demonstrated by several design examples and comparison with conventional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.