Abstract

Hypoxia plays a critical role in the development and wound healing process, as well as a number of pathological conditions. Here, dextran-based hypoxia-inducible (Dex-HI) hydrogels formed with in situ oxygen consumption via a laccase-medicated reaction are reported. Oxygen levels and gradients were accurately predicted by mathematical simulation. It is demonstrated that Dex-HI hydrogels provide prolonged hypoxic conditions up to 12 h. The Dex-HI hydrogel offers an innovative approach to delineate not only the mechanism by which hypoxia regulates cellular responses, but may facilitate the discovery of new pathways involved in the generation of hypoxic and oxygen gradient environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.