Abstract

We introduce a new framework for designing a transition metal (TM) d-electrons dominant Dirac cone spectrum based on the hybridization between graphene and a modulated TM d impurity band. The obtained Dirac cone behaves like a ‘copy’ from graphene, insensitive to the TM coverage and order. First-principles calculations reveal such a system of Mn intercalated epitaxial graphene on SiC(0 0 0 1), dubbed manganosine. The robustness of the Dirac cone is discussed in terms of the possible imperfection of Mn atoms. The mechanism at work is expected to be rather general and may open the door to designing new d- or f-character Dirac systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.