Abstract

The p-type semiconductor of Cu-doped ZnO-based thermoelectric material has already been synthesized and studied as an energy harvester. The next challenge is manufacturing the thermoelectric module in the development of thermoelectric as an eco-friendly material in the future. This research aims to investigate the effect of thermoelectric geometric design on the electrical output power and voltage and to recommend the most appropriate thermoelectric geometric design. The design of thermoelectric generator (TEG) includes the determinations of dimension (width, length, and height), number of modules, and semiconductor materials. The simulation used the coupled-field analysis of ANSYS APDL 14.5 in the steady state condition. The p- and n- type thermoelectric material used Cu-doped ZnO and Al-doped ZnO, respectively. The width of element and the number of thermoelectric module were varied to obtain a thermoelectric design, which produces the largest current, power, and voltage. The result of research shows that the t hermoelectric generator with the element widths of 0.94 mm, 1.125 mm, 1.05 mm, and 1.2 mm generates the largest power output and voltage, namely: 0.32 W and 0.89 V, 0.38 W and 0.98 V, 0.45 W and 1.06 V, and 0.52 W and 1.13 V, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call