Abstract

After surgery for ovarian cancer or colorectal cancer, residual tumors are left around. A practical way to treat residual tumors is to destroy them with heat by injecting high-temperature drugs into the abdominal cavity. The injected medicinal substances are induced to flow out of the abdominal cavity; then, the spilled drug flows back into the abdominal cavity through feedback. During this process, the heat starts to decrease; thus, the treatment performance reduces. To overcome this problem, this study compares and assesses the temperature needed to maintain the heat for treatment and transmits a command signal to the heat exchanger through a look-up table (LUT). When the temperature decreases during the circulation of medications leaking out of the abdominal cavity, the LUT transmits a control signal (Tp) to the heat exchanger, which increases or vice versa. However, if the temperature (To) is within the treatment range, the LUT sends a Ts signal to the heat exchanger. This principle generates a pulse signal for the temperature difference (Tdif) in TC by comparing and determining the temperature (To) of the substance flowing out of the abdominal cavity with the reference temperature (Tref) through the temperature comparator (TC). At this time, if the signal is 41 °C or less, the LUT generates (heats) a Tp signal so that the temperature of the heat exchanger can be maintained in the range of 41 °C to 43 °C. If the Tdif is 44 °C or higher, the LUT generates (cools) the Ta signal and maintains the temperature of the heat exchanger at 41-43 °C. If the Tdif is maintained at 41-43 °C, the LUT generates a Tx signal to stop the system performance. At this time, the TC operation performance and Tdif generation process for comparing and determining the signal of To and Tref for drugs leaking out of the abdominal cavity is very important. It was observed that the faster the response signal, the lower the comparison and judgment error was; therefore, the response signal was confirmed to be 0.209 μs. The proposed method can guarantee rapid/accurate/safe treatment and automatically induce temperature adjustment; thus, it could be applied to the field of surgery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.