Abstract

The dependence-graph (DG) approach is extended and applied to the systematic design of a systolic array system. Two DGs that represent two different but data-dependent process algorithms are first linked together. Tag bits are added onto index nodes in this linked DG and used to indicate the different functions to be executed on single processor element. By applying the conventional time-scheduling and node-assignment procedures to this tagged DG, the interfacing communication problem of a systolic array system can be solved and the optimal latency can be easily obtained. Using this method, an optimal linear-state solver has been designed. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.