Abstract
The next generation WiFi standard needs to consider how to better support ultra-low delay services. There are a lot of works proposed to improve the delay performance of traffic flows in WiFi networks. However, in order to face the high uncertainty of traffic arrival characteristics, it is necessary to explore new methodology to propose feasible Multiple Access Control (MAC) strategies and protocols supporting ultra-low delay services. This paper discusses the design methodology of ultra-low delay MAC strategies and protocols for next generation WiFi. Firstly, a general end-to-end transmission and processing model for an Information Transmission and Processing Network (ITPN) is proposed. The end-to-end delay of an ITPN is analyzed and the expression of the minimum end-to-end delay is obtained. Interestingly, based on the expression of the minimum end-to-end delay, we reveal three key factors that determine the end-to-end delay, namely, the number of processing blocks of the system, the size of information blocks processed and the total processing bandwidth of the system. Furthermore, some key technologies are proposed, which points out the feasible and attractive directions for the follow-up researches. Finally, a general ultra-low delay MAC framework based on the idea of “flexible reservation” is proposed. We believe that apart from IEEE 802.11 WLAN, the MAC framework proposed in this paper can be readily applied to various kinds of wireless networks.KeywordsWireless LANIEEE 802.11Ultra-low delay servicesMedium access controlReservationPreemption
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.