Abstract

We present the design of the high-voltage (30 MV) Applied-B ion diode that is now being tested on the PBFA-II accelerator at Sandia National Laboratories. This diode design is the first application of a new set of numerical design tools that have been developed over the past several years. Furthermore, this design represents significant departures from previous designs due to much higher voltage and the use of a nonprotonic ion, Li+. The higher voltage increases the magnetic field strength required to insulate the diode from 1 to 2 T of previous diodes to 3–7 T. This represents a very large increase in the magnetic field energy and the magnetic forces exerted on the field-coil structures. Our new design incorporates changes in the field-coil locations to significantly reduce the field energy and the forces on the field-coil structures. The use of nonprotonic ions introduces a new complication in that these ions will be stripped when they penetrate material, i.e., the gas cell membrane. The importance of current neutralization, charge-exchange reactions, and the conservation of canonical angular momentum are discussed in the context of designing light ion diodes suitable as drivers for inertial confinement fusion. We have simulated the performance of this diode design using the electromagnetic particle-in-cell code, magic. We find that the most sensitive point in the power flow is the transition from the self-magnetically insulated transmission line to the applied field region of the diode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.