Abstract

At present, the conversion efficiency of high concentrated photovoltaic modules is about 30%, most of the solar energy is converted into heat, which will result in solar cell temperature rise and subsequent module efficiency decrease. For existing module with large solar cell, the heat source is concentrated and additional cooling fins must be used, resulting in high system complexity and cost rise. In order to lower the cost of photovoltaic, we developed distributed cooling type module with simple structure. This paper depicts a distributed cooling design for high concentrated photovoltaic module, as well as the thermal simulation of this design with analysis software. Module prototype was also made to test the actual effect. The final outdoor results showed high consistency with the simulation results. The chip temperature can be lower than 45℃ and the module outdoor working efficiency is higher than 26% ,and lower temperature provide a guarantee of long-term reliability to module packaging material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.