Abstract
Specifically designed nanofibers enriched with chemically active nanoparticles, capable of destruction of chemical warfare agents (CWA's) and other toxic chemicals are highly desirable for the incorporation in personal protective equipment and decontamination items. In this work, we prepared six types of nanofibrous materials, based on the two types of polymers, polyvinylchloride (PVC) and polyvinylbutyral (PVB). As carriers of active chemistry, nanoparticles of cerium-dioxide (CeO2) and zirconium(IV)hydroxide (Zr(OH)4) were used. The morphology of the samples obtained and their qualitative chemical composition was investigated by scanning electron microscopy (SEM). The degradation ability of the nanofibrous mats was firstly investigated in an aqueous environment, over wide range of buffered pH conditions, using spectrophotometric method and paraoxon-ethyl as a model compound. A rather slow, but significant degradation of paraoxon-ethyl was observed on nanofibers which contained CeO2 nanoparticles in neutral conditions. The sulphur mustard (HD) adsorption was investigated in non-aqueous environment using GC-MS method. The samples made of PVC exerted strong adsorption of HD with almost six fold reduction in HD concentration but without any degradation of the test compound. In conclusion, nanofibers obtained showed strong adsorption ability in non-polar solvents, but further modification of CeO2 and Zr(OH)4 nanoparticles are necessary to enhance their CWA degradation ability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.