Abstract

The focusing electrode and a probe projecting through the cathode serve as control electrodes for the current from a convergent-beam electron gun. The principal advantage of this type of is that there is no interception of the high-current-density beam by the probe-grid. This paper presents the design procedure and experimental results for typical probe-gridded guns. The design procedure is used to obtain the desired perveance, beam diameter, and approximate laminar electron flow. The probe geometry that results in a minimum beam distortion is discussed. The range of values of amplification factor obtainable and the influence of probe geometry on this factor are discussed. The magnetic field required for focusing the beam from a probe-gridded gun is compared with that required for perfect laminar flow and for focusing the beam from a nongridded gun of similar design. An electrolytic tank in conjunction with an analog computer was used to plot electron trajectories, with the effect of space charge included, for the probe-gridded gun and a similar nongridded gun. A comparison of the electron optics of the gridded and nongridded gun is made. Electrical breakdown and beam current during the interpulse time are problems considered. Methods used to minimize electrical breakdown and interpulse beam current are presented. Several models of probe-gridded guns were constructed. The measured characteristics of these guns demonstrate that the advantages of grid control can be obtained with only a minor effect on gun perveance and beam focusing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.