Abstract

The Gravitational wave highly energetic Electromagnetic Counterpart All-sky Monitor (GECAM) is dedicated to detecting gravitational wave gamma-ray bursts. It is capable of all-sky monitoring over and discovering gamma-ray bursts and new radiation phenomena. GECAM consists of two microsatellites, each equipped with 8 charged particle detectors (CPDs) and 25 gamma-ray detectors (GRDs). The CPD is used to measure charged particles in the space environment, monitor energy and flow intensity changes, and identify between gamma-ray bursts and space charged particle events in conjunction with GRD. CPD uses plastic scintillator as the sensitive material for detection, silicon photomultiplier array as the optically readable device, and the inlaid Am-241 radioactive source as the onboard calibration means. In this paper, we will present the working principle, physical design, functional implementation and preliminary performance test results of the CPD. As a result, the energy range of electron, gamma-ray detection efficiency and dead time are tested to be better than the indexes required through the ground calibration experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.