Abstract

Name services are critical for mapping logical resource names to physical resources in large-scale distributed systems. The Domain Name System (DNS) used on the Internet, however, is slow, vulnerable to denial of service attacks, and does not support fast updates. These problems stem fundamentally from the structure of the legacy DNS.This paper describes the design and implementation of the Cooperative Domain Name System (CoDoNS), a novel name service, which provides high lookup performance through proactive caching, resilience to denial of service attacks through automatic load-balancing, and fast propagation of updates. CoDoNS derives its scalability, decentralization, self-organization, and failure resilience from peer-to-peer overlays, while it achieves high performance using the Beehive replication framework. Cryptographic delegation, instead of host-based physical delegation, limits potential malfeasance by namespace operators and creates a competitive market for namespace management. Backwards compatibility with existing protocols and wire formats enables CoDoNS to serve as a backup for legacy DNS, as well as a complete replacement. Performance measurements from a real-life deployment of the system in PlanetLab shows that CoDoNS provides fast lookups, automatically reconfigures around faults without manual involvement and thwarts distributed denial of service attacks by promptly redistributing load across nodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.