Abstract

In this paper, micron-scale frequency selective surfaces (FSS) are presented for the first time that exhibit multiple strong stopbands (>10dB) in the far-infrared (IR). Fractal and genetic algorithm (GA) synthesis techniques are employed in the design of single-layer, multiband IR FSS. These designs have been fabricated on thin, flexible polyimide substrates and characterized using Fourier transform infrared (FTIR) spectroscopy. Measurements show excellent agreement with predictions from a periodic method of moments (PMoM) analysis technique that takes into account metallic and dielectric losses. Additional design constraints were incorporated into the GA in order to guarantee that the synthesized FSS structures could be accurately fabricated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.