Abstract
Freeform optics have been found in a variety of beam shaping designs. However, they are typically used to form prescribed illumination patterns on a planar surface. In this paper, we will demonstrate a ray mapping based method to design smooth freeform lenses to form complicated illumination distributions on curved surfaces. The ray mapping between the source and target is established by solving an optimal mass transportation problem which is governed by the Monge-Ampére partial differential equation. Then, the freeform lens is constructed by a geometric method based on the optimal ray mapping. Finally, the performance of the lens is verified by Monte Carlo ray tracing simulation in Zemax OpticStudio software. To show the effectiveness of the proposed method, several freeform lenses are designed as examples for a collimated light source to generate different illumination patterns on different curved surfaces. A freeform lens is also fabricated and experimented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.