Abstract

Objective. Improving the local uniformity of field for awake monkey brain magnetic resonance imaging (MRI) at ultra-high fields while facilitating convenient placement and fixation of MRI-compatible multimodal devices for neuroscience study, can eventually advance our understanding of the primate’s brain organization. Approach. A group of single-channel RF coils including conventional loop coils and loopole coils sharing the same size and shape were designed for comparison; their performance as the transmit coil was quantitatively evaluated through a series of numerical electromagnetic (EM) simulations, and further verified by using 7T MRI over a saline phantom and a monkey in vivo. Main results. Compared to conventional loop coils, the optimized loopole coil brought up to 23.5% uniformity improvement for monkey brain imaging in EM simulations, and this performance was further verified over monkey brain imaging at 7T in vivo. Importantly, we have systematically explored the underlying mechanism regarding the relationship between loopole coils’ current density distribution and uniformity, observing that it can be approximated as a sinusoidal curve. Significance. The proposed loopole coil design can improve the imaging quality in awake and behaving monkeys, thus benefiting advanced brain research at UHF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.