Abstract
A global paradigm shift to redefine the International System of Units (SI) from a system based on seven fundamental units to seven fundamental constants is well under way. More specifically, the unit of mass, the kilogram, will be realized via a fixed value of the Planck constant $h$ and a Kibble balance (KB) serves as a method of achieving this. Over the past few decades, national metrology institutes around the world have invested in developing KBs, the majority aimed at realizing the unit of mass at the I-kg level with uncertainties on the order of a few parts in 108. However, upon fixing the Planck constant, mass can be directly realized at any level, deeming the kilogram only a historically unique benchmark. At the National Institute of Standards and Technology (NIST), a tabletop-sized Kibble balance (KIBB-gI) designed to operate at the gram-level range with uncertainties on the order of a few parts in 106 is currently under development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.