Abstract
Aiming to assist stroke patients who suffer from motor dysfunction after stroke and reduce the stress of physiotherapists, a 3-degree-of-freedom (3DOF) lower limb rehabilitation robot (LLRR) has been developed for the motion recovery in this paper. At first, a simple and flexible structure of LLRR is designed, which involves hip, knee and ankle joints and can also be adjusted to fit for the different heights of patients. Then, for the controller design, control-oriented model of LLRR is studied and validated by both simulation and experiments, including the kinematic model of mechanical system, friction model of rotation joints and motor model of actuators. Based on the proposed models, an adaptive robust sub-controller is synthesized to make each joint track its designed training trajectory, overcome system uncertainties and reject the disturbances from patient. At last, experiments are carried out to validate the proposed LLRR by the passive movement training.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.