Abstract

This article proposes and designs a novel variable pitch adjustment device for small wind turbines. The generator spindle is designed to be hollow so that the drive rod passes through it and connects the pitch drive mechanism to the pitch actuator. The article introduces the basic structure and working principle of the pitch mechanism and verifies the feasibility of the pitch device by using 3D printing technology to produce a small-scale model. The stress analysis of the wind turbine was carried out using the unidirectional fluid–structure coupling method. The results show that the maximum equivalent stress of the pitch mechanism is 27.42 MPa, the maximum tooth surface contact stress of the gear is 38.40 MPa, and the maximum tooth root bending stress is 18.13 MPa. The rack synchronous disk, blade handle, and gear rack mechanism were designed with light weight using various optimization schemes. The results of the optimization showed that the overall mass of the pitch mechanism was reduced by 33.2%, improving the applicability of the new pitch mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call