Abstract
Desert locusts (Schistocerca gregaria) occasionally feed on Schouwia purpurea, a plant that contains tenfold higher levels of glucosinolates than most other Brassicaceae. Whereas this unusually high level of glucosinolates is expected to be toxic and/or deterrent to most insects, locusts feed on the plant with no apparent ill effects. In this paper, we demonstrate that the desert locust, like larvae of the diamondback moth (Plutella xylostella), possesses a glucosinolate sulfatase in the gut that hydrolyzes glucosinolates to their corresponding desulfonated forms. These are no longer susceptible to cleavage by myrosinase, thus eliminating the formation of toxic glucosinolate hydrolysis products. Sulfatase is found throughout the desert locust gut and can catalyze the hydrolysis of all of the glucosinolates present in S. purpurea. The enzyme was detected in all larval stages of locusts as well as in both male and female adults feeding on this plant species. Glucosinolate sulfatase activity is induced tenfold when locusts are fed S. purpurea after being maintained on a glucosinolate-free diet, and activity declines when glucosinolates are removed from the locust diet. A detoxification system that is sensitive to the dietary levels of a plant toxin may minimize the physiological costs of toxin processing, especially for a generalist insect herbivore that encounters large variations in plant defense metabolites while feeding on different species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.