Abstract

A new perturbation and continuation method is presented for computing and analysing stellarator equilibria. The method is formally derived from a series expansion about the equilibrium condition $\boldsymbol {F} \equiv \boldsymbol {J}\times \boldsymbol {B} - \boldsymbol {\nabla } p = 0$ , and an efficient algorithm for computing solutions to second- and third-order perturbations is developed. The method has been implemented in the DESC stellarator equilibrium code, using automatic differentiation to compute the required derivatives. Examples are shown demonstrating its use for computing complicated equilibria, perturbing a tokamak into a stellarator and performing parameter scans in pressure, rotational transform and boundary shape in a fraction of the time required for a full solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call