Abstract

Three-dimensional equilibrium codes are vital for stellarator design and operation, and high-accuracy equilibria are also necessary for stability studies. This paper details comparisons of two three-dimensional equilibrium codes: VMEC, which uses a steepest-descent algorithm to reach a minimum-energy plasma state, and DESC, which minimizes the magnetohydrodynamic (MHD) force error in real space directly. Accuracy as measured by satisfaction of MHD force balance is presented for each code, along with the computation time. It is shown that DESC is able to achieve more accurate solutions, especially near axis. The importance of higher-accuracy equilibria is shown in DESC's better agreement of stability metrics with asymptotic formulae. DESC's global Fourier–Zernike basis also yields solutions with analytic derivatives explicitly everywhere in the plasma volume, provides improved accuracy in the radial direction versus conventional finite differences and allows for exponential convergence. Further, DESC can compute a solution with the same accuracy as VMEC in order-of-magnitude less time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.