Abstract

We consider two families of spaces, X: the closed orientable Riemann surfaces of genus \(g>0\) and the classifying spaces of right-angled Artin groups. In both cases we compare the depth of the fundamental group with the depth of an associated Lie algebra, L, that can be determined by the minimal Sullivan algebra. For these spaces we prove that $$\begin{aligned} \text{ depth } \,{\mathbb {Q}}[\pi _1(X)] = \text{ depth }\, {L}\, \end{aligned}$$ and give precise formulas for the depth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.