Abstract

In cases of essential fatty acid deficiency, 5,8,11-eicosatrienoic acid (Mead acid, 20:3n-9) is synthesized from oleic acid as a 20-carbon analog of arachidonic acid. It was reported that 20:3n-9 levels were markedly higher in human fetal cartilage than in the muscle, liver and spleen. We, therefore, hypothesized that 20:3n-9 decreased osteoblastic activity. Goldfish scales were incubated either with 20:3n-9 or with oleic acid at 15 degrees C for 6 and 18 h. Both osteoblastic and osteoclastic activities in the scale were assessed by measuring alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase, respectively. MC3T3-E1 cells (an osteoblast cell line derived from the mouse) were incubated with 20:3n-9 or oleic acid at 37 degrees C for 6 and 18 h. ALP activity in cell lysate was measured. In the case of experiments with scales, 20:3n-9 (1-100 muM) significantly suppressed osteoblastic activity after 6 and 18 h of incubation, whereas oleic acid did not change this activity. Osteoclastic activity was not affected either by 20:3n-9 or by oleic acid. In the case with the cell line, osteoblastic activity was again significantly decreased with 20:3n-9 (10-30 muM) after 6-h incubation but not after 18 h incubation. The presence of 20:3n-9 in fetal cartilage may be important for the prevention of calcification in the cartilage. 20:3n-9 could be applied to some clinical situations where bone formation should be inhibited.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.