Abstract

The Eocene middle number of the Liushagang Formation (LS2) of the Weixinan Sag, Beibuwan Basin, characterized by a thick succession of excellent quality source rocks, is composed of lacustrine organic-rich shales, mudstones, and shales (mudstones/shales). However, the complex and specific depositional environment in the source rocks of LS2 raise questions about the mainly controlling factors of lacustrine organic matter (OM) accumulation. In this study, total organic carbon (TOC) contents, Rock-Eval pyrolysis, as well as biomarker data are used to investigate the nature of the depositional environment and the enrichment mechanism of OM in the source rocks of LS2. The values of Tmax, CPI, C29 steranes αββ/(ααα+αββ), and the 22S/(22S+22R) ratios of the 17α, 21β(H)-C31 hopane together confirm that the OM in the source rocks of LS2 is immature to of low maturity, which suggests that the nature of biomarkers may not be affected by thermal maturity. The hydrocarbon potential was higher in the organic-rich shales (with a mean of 20.99 mg/g) than in the mudstones/shales (with a mean of 7.10 mg/g). The OM in organic-rich shales is type I and II kerogen and that in mudstones/shales is type II kerogen. The C27/C29 regular steranes ratios and 4-methylsterane indices (4MSI) further confirmed the difference in the source of OM between organic-rich shales and mudstones/shales; that is, that the OM of organic-rich shales is mainly derived from the lake algae and aquatic macrophytes and the OM of mudstones/shales is mainly from the higher plants. The values of the gammacerane index and ratios of C21/C23 TT and C24 Tet/C26 TT all indicate that the source rocks from LS2 are deposited in freshwater to a low salinity water column. Moreover, a cross-plot of C21–22/C27–29 sterane versus dia/reg C27 sterane ratios and Pr/Ph ratios suggests that the source rocks from LS2 are recorded to have sub-oxic to oxic conditions. Based on those analyses, two dynamical formation models were proposed: a high-productivity and oxic-suboxic dynamical formation model (Model A) and a low-productivity and oxic-suboxic dynamical formation model (Model B).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call