Abstract

Radiation protection by thiols in procaryotes and lower eucaryotes has been demonstrated repeatedly to require a competent DNA repair phenotype, suggesting that simple chemical radical scavenging and hydrogen donation are only a portion of the mechanism of radiation protection by thiols. In the present report, thiol-induced radiation resistance--a model in which cells are pretreated with dithiothreitol and then irradiated in the absence of thiol--is shown to be a medium-dependent process. Wild-type log-phase cells treated with dithiothreitol in minimal-glucose medium are induced to radioresistance that persists after the thiol has been removed. Although the thiol pretreatment affected the antioxidants (catalase, superoxide dismutase, and glutathione) in cells at the time of irradiation, various antioxidant levels did not predict radiation resistance. Thiol-induced radioresistance is not expressed in rich medium-treated cells or in DNA repair (recA)-deficient cells. Addition of the efficient chelator, DETAPAC, to the thiol treatment medium leads to additional radioresistance in the case of minimal medium and a moderate expression of resistance in rich medium. Experiments using the intracellular chelator, 1,10-phenanthroline, in the presence of thiol led to inhibition of thiol-induced resistance in minimal medium and radiosensitization in rich medium. These results can be explained by a "site-specific" mechanism of thiol oxidation in which the chelators control the site(s) and rate of thiol oxidation, subsequently determining the type of cellular response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.