Abstract

We consider reasons why the crosslinking reaction rate in poly(dimethyl siloxane) (PDMS) network coatings might differ from the rate found in the bulk and specifically examine the influence of coating thickness. Infrared spectroscopic ellipsometry (IRSE) is employed as an in situ probe of the reactions between vinyl (–CHCH 2) end groups on PDMS and SiH groups in a crosslinker and between unreacted SiH groups and hydroxyl/silanol groups within PDMS coatings, all on silicon substrates. Measurements of the concentrations of SiH groups (using the characteristic vibration at 2160 cm −1) were obtained from coatings between 1 and 27 μm in thickness, over temperatures ranging from 25 to 120 °C. First-order kinetics are exhibited in the consumption of SiH groups. The reaction rate constant is found to decrease with increasing coating thickness. Although there is evidence that the Pt catalyst segregates to the interface with the substrate, this phenomenon does not appear to have an impact on the thickness dependence. The diffusion of water into the silicone might be the rate-limiting step in the reactions, however, and therefore lead to the observed thickness dependence of the reaction rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.