Abstract
Large diurnal and seasonal variations in methane flux from rice paddies have been found in many studies. Although these variations are considered to result from changes in methane formation rates in the soil and the transport capacity (e.g. biomass, physiological activities, and so on) of rice plants, the real reasons for such variations are as yet unclear. This study was conducted to clarify the effects of temperature on the rate of methane transport from the root zone to the atmosphere using hydroponically grown rice plants. Methane emission rates from the top of the rice plants whose roots were soaked in a solution with a high methane concentration were measured using a flow-through chamber method with the top or root of the rice plants being kept at various temperatures. The methane emission rates and methane concentrations in solution were analyzed using a diffusion model which assumes that the methane emission from a rice paddy is driven by molecular diffusion through rice plants by a concentration gradient. In the experiment where the temperature around the root was changed, the conductance for methane diffusion was typically 2.0-2.2 times larger when the solution temperature was changed from 15 to 30 °C. When the air temperature surrounding the top of the rice plant was changed, the change in conductance was much less. In addition, from measurements of methane flux and methane concentration in soil water in a lysimeter rice paddy during the 2 growing seasons of rice, it was found that the conductance for methane transport was correlated with the soil temperature at 5 cm depth. These results suggest that the temperature around the root greatly affects the methane transport process in rice plants, and that the process of passing through the root is important in determining the rate of methane transport through rice plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.