Abstract

AbstractRare‐earth pyrochlore materials are promising thermal barrier coatings materials and fundamental understanding of their thermal transport is crucial for further improving its performance. In this work, using density functional theory (DFT) method, we calculated the intrinsic lattice thermal conductivities of Ln2Sn2O7 (Ln = La, Gd) and conducted a comprehensive analysis on the mode thermal conductivity, relaxation time, Grüneisen parameters, group velocity, and specific heat, respectively. It is shown that in pyrochlore‐type materials the number of the optical phonons is much larger than that of the acoustic phonon, and the thermal conductivity of acoustic phonons are suppressed, both of which increase the contribution ratio of optical phonons. Especially, through cumulative analysis, we found that the contribution of optical phonons is significant: the ratio of optical contribution is more than 50% and 64% in La2Sn2O7 and Gd2Sn2O7. This work provides a comprehensive picture illustrating the significant role of the optical phonons in the lattice thermal conduction in rare‐earth pyrochlore materials, and points out an avenue to obtain low thermal conductivity in complex structural thermal insulation materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.