Abstract

The mechanical property and hydrogen transport characteristics of selective laser melting (SLM) 304L stainless steel were investigated by tensile tests and thermal desorption spectroscopy (TDS). The heat treatment affected the hydrogen embrittlement (HE) susceptibility and the treatment at 950 °C showed the larger HE effects. Cellular structures and melt-pool boundaries were dissolved at 850 and 950 °C, respectively. TDS results indicate that the hydrogen diffusivity of the as-received SLM 304L was lower than that of wrought 304L and the hydrogen diffusion activation energy increased with the recrystallisation degree, which was related to the dislocation density. Dislocations, rather than strain-induced martensite, were the main cause of HE owing to the high austenite stability of the samples. The pre-existing dislocations in the SLM 304L sample heat-treated at 950 °C for 4 h affected the hydrogen transport behaviour during sample stretching and led to severe HE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call