Abstract
The uniformity improvement of high deposition rate in hydrogenated amorphous silicon (a-Si:H) film deposited by electron cyclotron resonance chemical vapor deposition (ECR-CVD) is very essential for a large substrate in PV solar industry. In order to improve the uniformity in depositing thin film in large area, the auxiliary magnetic coils were designed and installed in ECR-CVD to modify the distribution of magnetic field. In addition, the dependence of the other ECR-CVD processing parameters such as resonance position, microwave power, working pressure, and substrate temperature were investigated. The results indicated that more uniform a-Si:H film could be obtained when working pressure was decreased. By using finite element analysis, it was found that location of turbo pump would impact gas flow field and this effect would become more significant at high pressure. Increasing microwave power, increasing horizontal gradient of the magnetic field to the substrate, and forming Cusp magnetic field could enhance ECR-CVD deposition uniformity greatly. However, the plasma location and substrate temperature were not major factors affecting a-Si:H film uniformity in ECR-CVD process. Finally, the optimal and the best 3.8% in uniformity could be achieved in 150mm diameter when the ratio of magnetic field strength at wafer edge to wafer center is 215%, working pressure is 1.5 mtorr, microwave power density is 4W/cm2, and substrate temperature is 180°C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.