Abstract

The effect of dissolved sulfate concentration on the rate of bacterial sulfate reduction in marine sediment from Long Island Sound was examined using a radio-sulfur technique. The experimental results show that the rate is independent of the dissolved sulfate concentration until low levels are reached (<3 mM), and that, when interpreted using a Monod-type rate law, a saturation constant, K s , of 1.62 ± 0.16 M results. This weak dependence implies that the dissolved sulfate exerts only a limited influence on the rate of sulfate reduction in marine sediments. Given such a weak dependence, dissolved sulfate profiles in marine sediments must resemble profiles generated by models with sulfate independent kinetics. Initially, this would suggest that currently used sulfate-independent diagenetic models are appropriate in modelling sulfate profiles. However, comparison of these models with those containing weak sulfate-dependent kinetic terms shows that there exists considerable disagreement between these models when the parameter grouping (D sk) 1 2 /w is larger than ~0.2 and smaller than ~3.0. (Here D s is the SO ; 4 diffusion coefficient, k the organic matter decay constant and w the sediment burial velocity.) When the currently used models are corrected by employing physically meaningful boundary conditions, this divergence disappears. The modelling results, therefore, confirm the conclusion that any sulfate dependence inherent to the reduction kinetics does not appreciably affect sulfate pore water profiles, and that previous diagenetic studies using strong sulfate dependent models are erroneous.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call