Abstract

The ground state properties of light closed shell nuclei, i.e. 4He, 12C, 16O, 28Si, 32S, 40Ca and 56Ni are studied by using the channel-dependent effective two-body interactions (CDEI's). The CDEI's are generated through the lowest-order constrained variational (LOCV) calculation for asymmetric nuclear matter with the charge-dependent Av18 bare nucleon–nucleon potential. The work is performed on the harmonic oscillator basis, and the local density approximation is applied to create the relative and the center of mass dependent effective two-body potential. Unlike nuclear matter, and similar to our previous calculations with the Reid68 interaction, while the Av18 potential under binds above nuclei up J max = 2 channel, it gives ground state binding energies closer to the experimental data with respect to the Δ- Reid68 and the Reid68 potentials. There are not much difference between the results of Av18 interaction with J max = 5, and those of Reid68Day potential which has been define up to J max = 5. The different CDEI's up to J max = 5 are discussed and the results of our calculations are compared with the other theoretical approaches and experimental data. Finally, it is shown that the contributions of higher partial waves (J>2) are not very important and the two-body kinetic energy in J = 1 channel is roughly twice as that of J = 0 which is not the case for the two-body potential energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call