Abstract

LetF(x) =F[x1,…,xn]∈ℤ[x1,…,xn] be a non-singular form of degree d≥2, and letN(F, X)=#{xeℤ n ;F(x)=0, |x|⩽X}, where\(\left| x \right| = \mathop {max}\limits_{1 \leqslant r \leqslant n} \left| {x_r } \right|\). It was shown by Fujiwara [4] [Upper bounds for the number of lattice points on hypersurfaces,Number theory and combinatorics, Japan, 1984, (World Scientific Publishing Co., Singapore, 1985)] thatN(F, X)≪X n−2+2/n for any fixed formF. It is shown here that the exponent may be reduced ton - 2 + 2/(n + 1), forn ≥ 4, and ton - 3 + 15/(n + 5) forn ≥ 8 andd ≥ 3. It is conjectured that the exponentn - 2 + e is admissable as soon asn ≥ 3. Thus the conjecture is established forn ≥ 10. The proof uses Deligne’s bounds for exponential sums and for the number of points on hypersurfaces over finite fields. However a composite modulus is used so that one can apply the ‘q-analogue’ of van der Corput’s AB process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.