Abstract

The formation of the largest objects in the Kuiper belt, with measured densities of ~1.5 g cm-3 and higher, from the coagulation of small bodies, with measured densities below 1 g cm-3 is difficult to explain without invoking significant porosity in the smallest objects. If such porosity does occur, measured densities should begin to increase at the size at which significant porosity is no longer supported. Among the asteroids, this transition occurs for diameters larger than ~350 km. In the Kuiper belt, no density measurements have been made between ~350 km and ~850 km, the diameter range where porosities might first begin to drop. Objects in this range could provide key tests of the rock fraction of small Kuiper belt objects. Here we report the orbital characterization, mass, and density determination of the 2002 UX25 system in the Kuiper belt. For this object, with a diameter of ~650 km, we find a density of 0.82+/-0.11 g cm-3, making it the largest solid known object in the solar system with a measured density below that of pure water ice. We argue that the porosity of this object is unlikely to be above ~20%, suggesting a low rock fraction. If the currently measured densities of Kuiper belt objects are a fair representation of the sample as a whole, creating ~1000 km and larger Kuiper belt objects with rock mass fractions of 70% and higher from coagulation of small objects with rock fractions as low as those inferred from 2002 UX25 is difficult.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call