Abstract
We introduce an analytical iterative method, the density matrix recursion method, to generate arbitrary reduced density matrices of superpositions of short-range dimer coverings on periodic or non-periodic quantum spin-1/2 ladder lattices, with an arbitrary number of legs. The method can be used to calculate bipartite as well as multipartite physical properties, including bipartite and multi-partite entanglement. We apply this technique to distinguish between even- and odd-legged ladders. Specifically, we show that while genuine multi-partite entanglement decreases with increasing system size for the even-legged ladder states, it does the opposite for odd-legged ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.