Abstract

Spinel phase lithium titanate (Li4Ti5O12 or LTO) has been studied as an alternative anode material with a “zero-strain” characteristic structure to improve safety, cycling stability, and rate performance. LTO offers stable Li-ion diffusion at a higher charge-discharge rate without noticeable structural change. However, LTO exhibits low electronic conductivity and low Li-ion diffusion compared to graphite-based anode materials, limiting its rate capability. In this study, we investigate the impact of Na atom doping on the diffusion rate in the Li4Ti5O12 (LTO) spinel phase using the density functional theory (DFT). Based on the nudged elastic band (NEB) calculation, we obtain the energy barrier values and each diffusion pathway, with barrier energy varying about 0.3~0.4 eV and affecting the value of the diffusion constant obtained. The study reveals the role of Na atom doping in the lithium-ion diffusion in NaxLi4-xTi5O12 for battery anode material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.